
@bclozel @sdeleuze#Devoxx #reactive

Developing Reactive
applications with  

Reactive Streams and Java 8
Brian Clozel / Sébastien Deleuze

Pivotal

@bclozel @sdeleuze#Devoxx #reactive

Brian Clozel

• Lyon, France +  

• Spring Framework 

• Spring Boot 

• @bclozel
This guy

@bclozel @sdeleuze#Devoxx #reactive

Sébastien Deleuze
• Remote worker at Pivota from

Reactor
Spring Framework 5
Kotlin support

• conference staff member

@bclozel @sdeleuze#Devoxx #reactive

Agenda

• Introduction to Reactive

• Live coding with Reactor Core 3

• Coffee break (20 minutes)

• Building a Reactive application with Spring Boot

• Live coding

@bclozel @sdeleuze#Devoxx #reactive

Why going Reactive?

More for scalability and stability than for speed

@bclozel @sdeleuze#Devoxx #reactive

Reactive, what is it?

Reactive is used to broadly define event-driven systems

@bclozel @sdeleuze#Devoxx #reactive

Reactive programming

Moving imperative logic to async, non-blocking,
functional-style code, in particular when interacting
with external resources

@bclozel @sdeleuze#Devoxx #reactive

Use case: remote call with latency

@bclozel @sdeleuze#Devoxx #reactive

Use case: serve a lot of slow clients

@bclozel @sdeleuze#Devoxx #reactive

Use case: push events to the client

Server-Sent Events
or Websocket

RabbitMQ broker

Messages

@bclozel @sdeleuze#Devoxx #reactive

Other use cases

• Live database queries

• Mobile (Android)

• Big Data

• Real time analytics

• HTTP/2

• …

@bclozel @sdeleuze#Devoxx #reactive

Can’t we just use Java 8 lambdas?
public	class	CallbackHell	{ 
 
	 public	void	callbackHell()	{ 
 
	 	 asyncMethod(a	-> 
	 	 	 asyncMethod(b	-> 
	 	 	 	 asyncMethod(c	-> 
	 	 	 	 	 asyncMethod( 
	 	 	 	 	 	 	 d	->	System.out.println("Values	received:	"	+	a	+	","	+	b	+	","	+	c	+	","	+	d), 
	 	 	 	 	 	 	 dEx	->	System.err.println("An	error	occurred:	"	+	dEx) 
) 
	 	 	 	 ,	cEx	->	System.err.println("An	error	occurred:	"	+	cEx)) 
	 	 	 ,bEx	->	System.err.println("An	error	occurred:	"	+	bEx)), 
	 	 aEx	->	System.err.println("An	error	occurred:	"	+	aEx)); 
	 } 
	  
	 private	void	asyncMethod(Consumer<Object>	success,	Consumer<?	super	Throwable>	failure)	{ 
	 	 // 
	 } 
 
}

@bclozel @sdeleuze#Devoxx #reactive

Can’t we just use Java 8 types?

Type Non-blocking Streaming

Future<T>

CompletableFuture<T> X

Stream<T> X

InputStream / OutputStream X

@bclozel @sdeleuze#Devoxx #reactive

We need tools

Reactor Core

RxJava

Reactive Streams

Akka Streams

Reactive APIs&

@bclozel @sdeleuze#Devoxx #reactive

Reactive Streams

• Reactive Streams is a contract for asynchronous stream
processing with non-blocking back pressure handling

• De-facto standard for the behaviour of reactive libraries
and for interoperability

• Co-designed by Netflix, Lightbend, Pivotal, RedHat, Kaazing,  
Twitter, and many others

• Implemented by RxJava 2, Reactor, Akka Stream …

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher Subscriber

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher Subscriber
subscribe

demand: 0

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher Subscriber
request(1)

demand: 1

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher SubscriberonNext(element1)

demand: 0

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher Subscriber

Publisher is not allowed to send new elements,
even if new ones are ready.

demand: 0

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher Subscriber
request(3)

demand: 3

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher SubscriberonNext(element2)

demand: 2

@bclozel @sdeleuze#Devoxx #reactive

onNext(element3)

Back-pressure

Publisher Subscriber

demand: 1

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

Publisher SubscriberonComplete()

demand: 1

@bclozel @sdeleuze#Devoxx #reactive

Back-pressure

• Allows to control the amount of inflight data

• Regulate the transfer between

• Slow publisher and fast consumer

• Fast publisher and slow consumer

@bclozel @sdeleuze#Devoxx #reactive

Reactive Streams is 4 interfaces (and a TCK)
public	interface	Publisher<T>	{	
		void	subscribe(Subscriber<?	super	T>	s);	
}	

public	interface	Subscriber<T>	{	
		void	onSubscribe(Subscription	s);	
		void	onNext(T	t);	
		void	onError(Throwable	t);	
		void	onComplete();	
}	

public	interface	Subscription	{	
		void	request(long	n);	
		void	cancel();	
}	

public	interface	Processor<T,	R>	extends	Subscriber<T>,	Publisher<R>	{	
}

@bclozel @sdeleuze#Devoxx #reactive

Available in 2 distinct packages

Same interfaces are included in the upcoming
Java 9 in java.util.concurrent:	

• Flow.Publisher	

• Flow.Subscriber	

• Flow.Subscription	

• Flow.Processor

As a standalone JAR with
org.reactivestreams package:

• Publisher	

• Subscriber	

• Subscription	

• Processor

@bclozel @sdeleuze#Devoxx #reactive

Reactive APIs on the JVM
Apply a wide range of transformations to your data with
operators: merge, buffer, split, transform, delay …

Reactor Core

RxJava

Akka Streams

@bclozel @sdeleuze#Devoxx #reactive

Reactive APIs on the JVM (1/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Types for  
0..n elements

Types for  
0..1 elements

Observable Single (1) 
Completable (0)

Source
Sink
Flow

Flux Mono (0..1)

Flowable	
Observable

Single (1)
Maybe (0..1)  

Completable (0)

@bclozel @sdeleuze#Devoxx #reactive

Reactive APIs on the JVM (2/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Reactive Streams
types

Non Reactive  
Streams types

Observable
Single 

Completable

Source
Sink	
Flow

Flux
Mono

Flowable

Observable	
Single	
Maybe 

Completable

Limited
back-pressure support

@bclozel @sdeleuze#Devoxx #reactive

Reactive APIs on the JVM (3/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Generation

2nd

3rd

4th

4th

Support

Limited
back-pressure

Reactive Streams + 
actor fusion

Reactive Streams + 
operator fusion

Reactive Streams + 
operator fusion

@bclozel @sdeleuze#Devoxx #reactive

Reactive APIs on the JVM (3/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Generation

2nd

3rd

4th

4th

Support

Limited
back-pressure

Reactive Streams + 
actor fusion

Reactive Streams + 
operator fusion

Reactive Streams + 
operator fusion

Check out  
http://akarnokd.blogspot.fr/2016/03/operator-fusion-part-1.html

http://akarnokd.blogspot.fr/2016/03/operator-fusion-part-1.html

@bclozel @sdeleuze#Devoxx #reactive

RxJava 2 or Reactor Core 3?

@bclozel @sdeleuze#Devoxx #reactive

Focus on Reactor Core 3

• Natively designed on top of Reactive Streams

• Lightweight API with 2 types: Mono and Flux	

• Native Java 8 support and optimisations

• Single 1 Mbytes JAR

• Focus on performance

• Reactive foundation of Spring Framework 5

@bclozel @sdeleuze#Devoxx #reactive

• Implements Reactive Streams Publisher	

• 0 to n elements

• Operators: flux.map(…).zip(…).flatMap(…)

Flux<T>

@bclozel @sdeleuze#Devoxx #reactive

• Implements Reactive Streams Publisher	

• 0 to 1 element

• Operators: mono.then(…).otherwise(…)

Mono<T>

@bclozel @sdeleuze#Devoxx #reactive

• Designed to test easily Reactive Streams Publishers

• Carefully designed after writing thousands of Reactor and
Spring reactive tests

StepVerifier

StepVerifier.create(flux) 
	 	 .expectNext("foo",	"bar") 
	 	 .expectComplete() 
	 	 .verify();

@bclozel @sdeleuze#Devoxx #reactive

Reactor 3 ecosystem

@bclozel @sdeleuze#Devoxx #reactive

Upcoming high-level features like …

@bclozel @sdeleuze#Devoxx #reactive

Live coding session

• Creating Mono and Flux

• StepVerifier

• Transform: map() + flatMap()

• Merge

• Request and Back pressure handling

• Error handling

• Convert & adapt: RxJava 2, List

• Reactive to blocking and other way around

@bclozel @sdeleuze#Devoxx #reactive

Flux.just(🍊,☕);
see you in 20 minutes!

@bclozel @sdeleuze#Devoxx #reactive

Spring Reactive Web

+

@bclozel @sdeleuze#Devoxx #reactive

Building a Reactive application
Building a web application with:

• Spring Boot Reactive starter (Experimental ⚠)

• Spring Boot 2.0 (SNAPSHOT 🛠)

• Spring Framework 5.0 (MILESTONE 🆕)

• Reactor 3.0 (RELEASE 🤘)

@bclozel @sdeleuze#Devoxx #reactive

@bclozel @sdeleuze#Devoxx #reactive

@bclozel @sdeleuze#Devoxx #reactive

Framework

Multiple runtimes

@bclozel @sdeleuze#Devoxx #reactive

Live coding session

• Calling remote REST APIs

• Dealing with datastores

• Error handling

• Rendering HTML views

• Serving static resources

• Server Sent Events

• And more!

@bclozel @sdeleuze#Devoxx #reactive

Our experience with
Reactor 3

@bclozel @sdeleuze#Devoxx #reactive

Changing your mindset

Non-blocking when Thread/IO boundary 
(Servlet async IO, Java NIO Channels, …)

@bclozel @sdeleuze#Devoxx #reactive

Changing your mindset

Revisit/reconsider some concepts 
(ThreadLocal, Transactions, shared state, …)

@bclozel @sdeleuze#Devoxx #reactive

Changing your mindset

Common language with your peers 
(async, non-blocking, back-pressure, reactivex, reactive

streams, operators…)

@bclozel @sdeleuze#Devoxx #reactive

Reactive Streams
1. Don’t implement Reactive Streams interfaces yourself 

(or do it "for fun")
2. Reactive Streams by itself is not enough
3. Nothing happens until something subscribes to the Publisher

@bclozel @sdeleuze#Devoxx #reactive

Concurrency
1. Debugging concurrency issues is hard
2. concurrency Debugging is issues hard

@bclozel @sdeleuze#Devoxx #reactive

Reactive ecosystem
1. Carefully select your libraries / API / drivers
2. Tooling is important
3. Define additional code style rules in your team

@bclozel @sdeleuze#Devoxx #reactive

Links

• @ProjectReactor & https://projectreactor.io

• https://github.com/reactor/lite-rx-api-hands-on 

• https://github.com/bclozel/spring-reactive-university

• https://spring.io

• https://spring.io/blog/2016/04/19/understanding-reactive-types

https://projectreactor.io
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/bclozel/spring-reactive-university
https://spring.io
https://spring.io/blog/2016/04/19/understanding-reactive-types

@bclozel @sdeleuze#Devoxx #reactive

Reactive Web Applications with Spring 5
Rossen Stoyanchev
Friday 9:30, Room 8

+

@bclozel @sdeleuze#Devoxx #reactive

The Spring BOF
Spring team

Wednesday 7:00 PM, BOF2

@bclozel @sdeleuze#Devoxx #reactive

Questions?

