Developing Reactive
applications with
Reactive Streams and Java 8

Brian Clozel /| Sébastien Deleuze
Pivotal

#Devoxx #reactive @bclozel @sdeleuze

™

>< Brian Clozel

. + €65
D Lyon, France + ©D

3N YEARS OF JAVA

JUST THE BEGINNING

* Spring Framework Spring Boot
for the web tier

Stéphane Nicoll, Brian Clozel

Pivotal ; D EVOX\/ =

BELGILL |

* Spring Boot
This guy ~

D o @ b C I OZ e I @snicoll @brianclozel

#Devoxx #reactive @bclozel @sdeleuze

™

Sébastien Deleuze

¢ 20
95>
x * Remote worker at from |3cordée

D (<»Reactor
© Spring Framework 5

>
1]
0

#Devoxx #reactive @bclozel @sdeleuze

K Kotlin support
o M2 7" conference staff member

Agenda

® |ntroduction to Reactive

Live coding with Reactor Core 3

Coffee break (20 minutes)

Building a Reactive application with Spring Boot

Live coding

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Why going Reactive?

More for scalability and stability than for speed

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Reactive, what is it?

Reactive is used to broadly define event-driven systems

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Reactive programming

Moving imperative logic to async, non-blocking,
functional-style code, in particular when interacting
with external resources

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

fe)[e][e

#Devoxx #reactive @bclozel @sdeleuze

Use case: serve a lot of slow clients

#Devoxx #reactive @bclozel @sdeleuze

Use case: push events to the client

£ AN

O ooo Messages
O

O

000

000
J

RabbitMQ broker

Server-Sent Events
or Websocket

#Devoxx #reactive @bclozel @sdeleuze

Other use cases

Live database queries
Mobile (Android)

Big Data

Real time analytics
HTTP/2

X
0
>
1]
0

#Devoxx #reactive @bclozel @sdeleuze

Can’t we just use Java 8 lambdas?

public class CallbackHell {
public void callbackHell() {

asyncMethod(a -»>
asyncMethod(b ->
asyncMethod(c -»>
asyncMethod(
d -> System.out.println("Values received: +a+",%"+b+","+c+"," +d),
dEx -> System.err.println("An error occurred: " + dEx)

)
, CEx -> System.err.println("An error occurred: " + cEx))
,bEx -> System.err.println("An error occurred: " + bEx)),

aEx -> System.err.println("An error occurred: " + aEx));
}
private void asyncMethod(Consumer<Object> success, Consumer<? super Throwable> failure) {

// ...
}

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

™

Can’t we just use Java 8 types?

Type Non-blocking Streaming

Future<I>
CompletableFuture<T>

Stream<T>

InputStream / OutputStream

We need tools

Reactive Streams & Reactive APIs

Q RxJava

Reactor Core

‘ Akka Streams

#Devoxx #reactive @bclozel @sdeleuze

DEVOX

Reactive Streams

e Reactive Streams is a contract for asynchronous stream
processing with non=blocking back pressure handling

® De-facto standard for the behaviour of reactive libraries
and for interoperability

® Co-designed by Netflix, Lightbend, Pivotal, RedHat, Kaazing,
Twitter, and many others

® |mplemented by RxJava 2, Reactor, Akka Stream ...

X
0
>
1]
0]

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher

demand: 0

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher

demand: |

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher onNext(elementi) m

demand: 0

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher

demand: 0

Publisher is not allowed to send new elements,
even if new ones are ready.

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher

demand: 3

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher onNext(element2) m

demand: 2

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher onNext(element3) m

demand: |

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

Publisher onComplete() m

demand: |

#Devoxx #reactive @bclozel @sdeleuze

Back-pressure

® Allows to control the amount of inflight data

® Regulate the transfer between
® Slow publisher and fast consumer

® Fast publisher and slow consumer

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Reactive Streams is 4 interfaces (and a TCK)

public interface Publisher<T> {
void subscribe(Subscriber<? super T> s);

¥

public interface Subscriber<T> {
void onSubscribe(Subscription s);
void onNext(T t);
void onError(Throwable t);
void onComplete();

¥

public interface Subscription {
void request(long n);
void cancel();

¥

public interface Processor<T, R> extends Subscriber<T>, Publisher<R> {

¥

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

™

Available in 2 distinct packages

X

O & waen

e Pu
e SuU

e Su

[:::] e Processor

#Devoxx #reactive

As a standalone JAR with
org.reactivestreams package:

plisher

nscriber

pscription

Java

Same interfaces are included in the upcoming
Java 9 in java.util.concurrent:

Flow.Publisher

Flow.Subscriber

Flow.Subscription
Flow.Processor

@bclozel @sdeleuze

b3
-

Reactive APIs on the JVM

¢
x Apply a wide range of transformations to your data with
operators: merge, buffer, split, transform, delay ...

Reactor Core

#Devoxx #reactive @bclozel @sdeleuze

Reactive APIs on the JVM (1/3)

Reactive APl 'YPes for Uy e
0..n elements 0..1 elements
Single (1)
RxJava 1 Observable
Completable (O)
Source
Akka Stream 2 Sink
Flow
Reactor Core 3 Flux Mono (0..1)
Flowable B ()
RxJava 2 Observable Maybe (0..1)
Completable (0)

#Devoxx #reactive @bclozel @sdeleuze

Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

#Devoxx #reactive

types

Source
Sink
Flow

Flowable

Non Reactive
Streams types

Observable
Single
Completable

..

..

Observable
Single
Maybe
Completable

Reactive APIs on the JVM (2/3)

Reactive Streams

Limited
back-pressure support

@bclozel @sdeleuze

Reactive APIs on the JVM (3/3)

Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Generation

Limited
back-pressure

Reactive Streams +
actor fusion

Reactive Streams +
operator fusion

Reactive Streams +
operator fusion

Reactive APIs on the JVM (3/3)

Reactive API Generation Support

Check out
http://akarnokd.blogspot.fr/2016/03/operator-fusion-part-|.html

Reactive Streams +

Reactor Core 3)
operator fusion

Reactive Streams +
operator fusion

RxJava 2

#Devoxx #reactive @bclozel @sdeleuze

http://akarnokd.blogspot.fr/2016/03/operator-fusion-part-1.html

RxJava 2 or Reactor Core 37

, David Karnok L
E‘b‘ akarnokd

Use Reactor 3 if you are allowed to use Java 8+,
use Rxdava 2 if you are stuck on Java 6+ or need
your functions to throw checked exceptions

< Voir la traduction

] Jo P sl d al

23 33 ¥ 48

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Focus on Reactor Core 3

® Natively designed on top of Reactive Streams
® Lightweight APl with 2 types: Mono and Flux

Native Java 8 support and optimisations
Single | Mbytes JAR

Focus on performance

Reactive foundation of Spring Framework 5

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Flux<T>

® Implements Reactive Streams Publisher

® 0 to n elements
® Operators: flux.map(..).zip(..).flatMap(..)

These are items emitted by

This vertical line indicates that the Flux
the Flux.

has completed successfully.
This is the timeline of the
Flux. Time flows from left +e—©—°—©—°—H

to right.

v v v v v vV vV

These dotted lines and this box
indicate that a transformation is being
operator applied to the Flux. The text inside the
box shows the nature of the
. . . . transformation.
\4 \4 \J \/

This Flux is the result >
of the transformation.

If for some reason the Flux terminates
abnormally, with an error, the vertical line is
replaced by an X.

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Mono<T>

® Implements Reactive Streams Publisher

® 0 to | element
® Operators:mono.then(..).otherwise(..)

This is the eventual item

. This vertical line indicates that the Mono
emitted by the Mono. s vert e e "

has completed successfully.

This is the timeline of the
Mono. Time flows from
left to right. -

v v These dotted lines and this box
indicate that a transformation is being
operator applied to the Mono. The text inside
the box shows the nature of the
. transformation.
]]
\/ \/

This Mono is the
result of the P>
transformation.

If for some reason the Mono terminates
abnormally, with an error, the vertical line is
replaced by an X.

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

StepVerifier

® Designed to test easily Reactive Streams Publishers

® Carefully designed after writing thousands of Reactor and
Spring reactive tests

StepVerifier.create(flux)
.expectNext("foo", "bar")
.expectComplete()
.verify();

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Reactor 3 ecosystem

DDDDDD

CORE Q. 0

| O

#Devoxx #reactive @bclozel @sdeleuze

Upcoming high-level features like ...

nnnnnnnnnnnnnn

1

EmitterProcessor

/Processors/schedule..

EmitterProcessor

Dispat’g:"HOn [82.4%)

ddddddd

#Devoxx #reactive @bclozel @sdeleuze

Live coding session

Creating Mono and Flux
StepVerifier
Transform: map() + flatMap()

Merge

Request and Back pressure handling

Error handling

Convert & adapt: RxJava 2, List

Reactive to blocking and other way around

X
0
>
1]
0

#Devoxx #reactive @bclozel @sdeleuze

Flux.just(9,=);
see you Iin 20 minutes!

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Spring Reactive Web

(@) + &) spring

evoxx #reactive @bclozel @sdeleuze

Building a Reactive application

Building a web application with:

® Spring Boot Reactive starter (Experimental /1)

4 &

® Spring Boot 2.0 (SNAPSHOT X
® Spring Framework 5.0 (MILESTONE &
® Reactor 3.0 (RELEASE ©)

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

XOANAFA

XOANAFA

Live coding session

Calling remote REST APlIs

Dealing with datastores
Error handling
Rendering HTML views

Serving static resources

Server Sent Events

And more!

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Our experience with
Reactor 3

evoxx #reactive @bclozel @sdeleuze

Changing your mindset

Non-blocking when Thread/IO boundary
(Servlet async IO, Java NIO Channels, ...)

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Changing your mindset

Revisit/reconsider some concepts
(ThreadlLocal, Transactions, shared state, ...)

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Changing your mindset

Common language with your peers
(async, non-blocking, back-pressure, reactivex, reactive
streams, operators...)

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Reactive Streams

|. Don’t implement Reactive Streams interfaces yourself
(or do it "for fun")

. Reactive Streams by itself is not enough
. Nothing happens until something subscribes to the Publisher

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Concurrency

Debugging concurrency issues is hard

N —

. concurrency Debugging is issues hard

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

Reactive ecosystem

|. Carefully select your libraries / APl / drivers
2. Tooling is important
3. Define additional code style rules in your team

DEVOX

#Devoxx #reactive @bclozel @sdeleuze

™

Links

é

® @ProjectReactor & https://projectreactor.io

® https://github.com/reactor/lite-rx-api-hands-on

® https://github.com/bclozel/spring-reactive-university

® https://spring.io

DEVOX

® https://spring.io/blog/2016/04/19/understanding-reactive-types

#Devoxx #reactive @bclozel @sdeleuze

https://projectreactor.io
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/bclozel/spring-reactive-university
https://spring.io
https://spring.io/blog/2016/04/19/understanding-reactive-types

Reactive Web Applications with Spring 5

Rossen Stoyanchev
Friday 9:30, Room 8

#Devoxx #reactive @bclozel @sdeleuze

The Spring BOF
Spring team
Wednesday 7:00 PM, BOF2

#Devoxx #reactive @bclozel @sdeleuze

 DEVOXCT

Questions?

@bclozel @sdeleuze

