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Brian Clozel

• Lyon, France +  

• Spring Framework 

• Spring Boot 

• @bclozel
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Sébastien Deleuze
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Agenda

• Introduction to Reactive 

• Live coding with Reactor Core 3

• Coffee break (20 minutes)

• Building a Reactive application with Spring Boot

• Live coding
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Why going Reactive?

More for scalability and stability than for speed
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Reactive, what is it?

Reactive is used to broadly define event-driven systems
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Reactive programming

Moving imperative logic to async, non-blocking, 
functional-style code, in particular when interacting 
with external resources
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Use case: remote call with latency
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Use case: serve a lot of slow clients
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Use case: push events to the client

Server-Sent Events
or Websocket

RabbitMQ broker

Messages
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Other use cases

• Live database queries

• Mobile (Android)

• Big Data

• Real time analytics

• HTTP/2

• …
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Can’t we just use Java 8 lambdas?
public	class	CallbackHell	{ 
 
	 public	void	callbackHell()	{ 
 
	 	 asyncMethod(a	-> 
	 	 	 asyncMethod(b	-> 
	 	 	 	 asyncMethod(c	-> 
	 	 	 	 	 asyncMethod( 
	 	 	 	 	 	 	 d	->	System.out.println("Values	received:	"	+	a	+	","	+	b	+	","	+	c	+	","	+	d), 
	 	 	 	 	 	 	 dEx	->	System.err.println("An	error	occurred:	"	+	dEx) 
	 	 	 	 	 ) 
	 	 	 	 ,	cEx	->	System.err.println("An	error	occurred:	"	+	cEx)) 
	 	 	 ,bEx	->	System.err.println("An	error	occurred:	"	+	bEx)), 
	 	 aEx	->	System.err.println("An	error	occurred:	"	+	aEx)); 
	 } 
	  
	 private	void	asyncMethod(Consumer<Object>	success,	Consumer<?	super	Throwable>	failure)	{ 
	 	 //	.... 
	 } 
 
}
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Can’t we just use Java 8 types?

Type Non-blocking Streaming

Future<T>

CompletableFuture<T> X

Stream<T> X

InputStream / OutputStream X
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We need tools

Reactor Core

RxJava

Reactive Streams

Akka Streams

Reactive APIs&
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Reactive Streams

• Reactive Streams is a contract for asynchronous stream 
processing with non-blocking back pressure handling

• De-facto standard for the behaviour of reactive libraries 
and for interoperability

• Co-designed by Netflix, Lightbend, Pivotal, RedHat, Kaazing,  
Twitter, and many others

• Implemented by RxJava 2, Reactor,  Akka Stream …
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Back-pressure

Publisher Subscriber
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Back-pressure

Publisher Subscriber
subscribe

demand: 0
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Back-pressure

Publisher Subscriber
request(1)

demand: 1
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Back-pressure

Publisher SubscriberonNext(element1)

demand: 0
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Back-pressure

Publisher Subscriber

Publisher is not allowed to send new elements,
even if new ones are ready.

demand: 0
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Back-pressure

Publisher Subscriber
request(3)

demand: 3
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Back-pressure

Publisher SubscriberonNext(element2)

demand: 2
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onNext(element3)

Back-pressure

Publisher Subscriber

demand: 1
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Back-pressure

Publisher SubscriberonComplete( )

demand: 1
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Back-pressure

• Allows to control the amount of inflight data

• Regulate the transfer between

• Slow publisher and fast consumer

• Fast publisher and slow consumer
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Reactive Streams is 4 interfaces (and a TCK)
public	interface	Publisher<T>	{	
		void	subscribe(Subscriber<?	super	T>	s);	
}	

public	interface	Subscriber<T>	{	
		void	onSubscribe(Subscription	s);	
		void	onNext(T	t);	
		void	onError(Throwable	t);	
		void	onComplete();	
}	

public	interface	Subscription	{	
		void	request(long	n);	
		void	cancel();	
}	

public	interface	Processor<T,	R>	extends	Subscriber<T>,	Publisher<R>	{	
}
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Available in 2 distinct packages

Same interfaces are included in the upcoming 
Java 9 in java.util.concurrent:	

• Flow.Publisher	

• Flow.Subscriber	

• Flow.Subscription	

• Flow.Processor

As a standalone JAR with 
org.reactivestreams package:

• Publisher	

• Subscriber	

• Subscription	

• Processor
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Reactive APIs on the JVM
Apply a wide range of transformations to your data with 
operators: merge, buffer, split, transform, delay …

Reactor Core

RxJava

Akka Streams
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Reactive APIs on the JVM (1/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Types for  
0..n elements

Types for  
0..1 elements

Observable Single (1) 
Completable (0)

Source 
Sink 
Flow

Flux Mono (0..1)

Flowable	
Observable

Single (1) 
Maybe (0..1)  

Completable (0)
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Reactive APIs on the JVM (2/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Reactive Streams
types

Non Reactive  
Streams types

Observable 
Single 

Completable

Source 
Sink	
Flow

Flux 
Mono

Flowable

Observable	
Single	
Maybe 

Completable

Limited
back-pressure support
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Reactive APIs on the JVM (3/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Generation

2nd

3rd

4th

4th

Support

Limited
back-pressure

Reactive Streams + 
actor fusion

Reactive Streams + 
operator fusion

Reactive Streams + 
operator fusion
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Reactive APIs on the JVM (3/3)
Reactive API

RxJava 1

Akka Stream 2

Reactor Core 3

RxJava 2

Generation

2nd

3rd

4th

4th

Support

Limited
back-pressure

Reactive Streams + 
actor fusion

Reactive Streams + 
operator fusion

Reactive Streams + 
operator fusion

Check out  
http://akarnokd.blogspot.fr/2016/03/operator-fusion-part-1.html

http://akarnokd.blogspot.fr/2016/03/operator-fusion-part-1.html


@bclozel @sdeleuze#Devoxx #reactive

RxJava 2 or Reactor Core 3?
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Focus on Reactor Core 3

• Natively designed on top of Reactive Streams

• Lightweight API with 2 types: Mono and Flux	

• Native Java 8 support and optimisations

• Single 1 Mbytes JAR

• Focus on performance

• Reactive foundation of Spring Framework 5
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• Implements Reactive Streams Publisher	

• 0 to n elements

• Operators: flux.map(…).zip(…).flatMap(…)

Flux<T>
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• Implements Reactive Streams Publisher	

• 0 to 1 element

• Operators: mono.then(…).otherwise(…)

Mono<T>
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• Designed to test easily Reactive Streams Publishers

• Carefully designed after writing thousands of Reactor and 
Spring reactive tests

StepVerifier

StepVerifier.create(flux) 
	 	 .expectNext("foo",	"bar") 
	 	 .expectComplete() 
	 	 .verify();
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Reactor 3 ecosystem
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Upcoming high-level features like …
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Live coding session

• Creating Mono and Flux

• StepVerifier

• Transform: map() + flatMap()

• Merge

• Request and Back pressure handling

• Error handling

• Convert & adapt: RxJava 2, List

• Reactive to blocking and other way around
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Flux.just(🍊,☕); 
see you in 20 minutes!
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Spring Reactive Web

+
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Building a Reactive application
Building a web application with:

• Spring Boot Reactive starter (Experimental ⚠)

• Spring Boot 2.0 (SNAPSHOT 🛠)

• Spring Framework 5.0 (MILESTONE 🆕)

• Reactor 3.0 (RELEASE 🤘)
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Framework

Multiple runtimes
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Live coding session

• Calling remote REST APIs

• Dealing with datastores

• Error handling

• Rendering HTML views

• Serving static resources

• Server Sent Events

• And more!
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Our experience with 
Reactor 3
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Changing your mindset

Non-blocking when Thread/IO boundary 
(Servlet async IO, Java NIO Channels, …)
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Changing your mindset

Revisit/reconsider some concepts 
(ThreadLocal, Transactions, shared state, …)
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Changing your mindset

Common language with your peers 
(async, non-blocking, back-pressure, reactivex, reactive 

streams, operators…)
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Reactive Streams
1. Don’t implement Reactive Streams interfaces yourself 

(or do it "for fun")
2. Reactive Streams by itself is not enough
3. Nothing happens until something subscribes to the Publisher
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Concurrency
1. Debugging concurrency issues is hard
2. concurrency Debugging is issues hard
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Reactive ecosystem
1. Carefully select your libraries / API / drivers
2. Tooling is important
3. Define additional code style rules in your team
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Links

• @ProjectReactor & https://projectreactor.io

• https://github.com/reactor/lite-rx-api-hands-on 

• https://github.com/bclozel/spring-reactive-university

• https://spring.io

• https://spring.io/blog/2016/04/19/understanding-reactive-types

https://projectreactor.io
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/bclozel/spring-reactive-university
https://spring.io
https://spring.io/blog/2016/04/19/understanding-reactive-types
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Reactive Web Applications with Spring 5
Rossen Stoyanchev
Friday 9:30, Room 8

+
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The Spring BOF
Spring team

Wednesday 7:00 PM, BOF2
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Questions?


